## SOLVENT SHIFT INDUCED BY HEXAFLUOROBENZENE IN NMR SPECTRA

Kunio NIKKI and Naoya NAKAGAWA

The University of Electro-Communications, Chofu, Tokyo 182

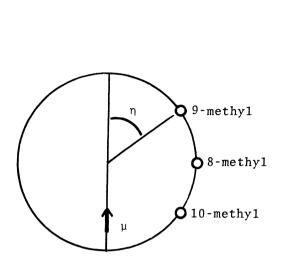
NMR solvent shifts induced by  ${\rm C_6F_6}$  have been interpreted as resulting from a dipole-quadrupole interaction.

Direction of solvent-induced shifts observed in the  $^1H$  NMR spectrum of a polar solute in  $^C6F_6$  have been known to be opposite to that of shifts in  $^C6H_6$ . 1) An electro-static interaction of dipole(solute)-quadrupole(solvent) have been reported as a principal cause of a large solvent shift in  $^C6H_6$  in a previous paper. 2)

The values of magnetic anisotropy of  $C_6H_6$  and  $C_6F_6$  are  $-89\times10^{-30}$  and  $-53\times10^{-30}$  emu, respectively. However, the principal values on the six-fold axis of quadrupoles of  $C_6H_6$  and  $C_6F_6$  are  $-56\times10^{-27}$  and  $+17.2\times10^{-26}$  esu, respectively. Remarkable is the presence of a close correlation between the sign of the principal values of the quadrupoles and the sence of the shifts.

Solvent shifts of the proton signals of three methyl groups of d-camphor in  $^{\rm C}_6{}^{\rm H}_6$  and  $^{\rm C}_6{}^{\rm F}_6$  have been measured and listed in Table 1. $^{7)}$  The observed shifts in  $^{\rm C}_6{}^{\rm F}_6$ 

Table 1. The observed NMR solvent shifts of d-camphor ( $\Delta\delta$  in ppm)


| signal     | in C <sub>6</sub> H <sub>6</sub> | in C <sub>6</sub> F <sub>6</sub> |
|------------|----------------------------------|----------------------------------|
| 10-methy 1 | -0 07                            | + 0.06                           |
| 9-methy    | +0.29                            | -0.16                            |
| 8-methy    | +0.21                            | -0.07                            |



have a sign opposite to that inferred from the carbonyl plane  ${
m rule}^{5)}$  in  ${
m C_6}^{
m H}_{6}$ .

In order to estimate a value of a solvent shift of camphor ( $\mu$ =3.10 Debye unit), <sup>6)</sup> a solute which is covered with protons has been assumed as a model (see Fig. 1). It is assumed that the orientation of  $C_6F_6$  molecules around a camphor molecule is mainly caused by the dipole-quadrupole interaction as described in the previous paper. <sup>2)</sup> The shifts have been calculated from the magnetic anisotropy of  $C_6F_6$  molecules oriented around the camphor. <sup>8)</sup> In Fig. 2, the calculated and the observed shifts in  $C_6F_6$  are

plotted against the angle  $\eta$  and compared. The observed values are in good agreement with the calculated results.



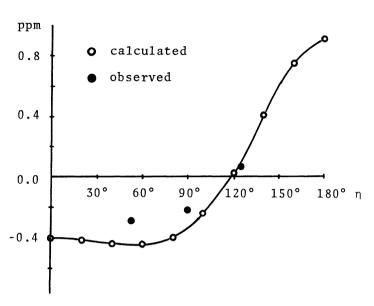



Fig. 1 The spherical molecular model for camphor.

Fig. 2 The relationship between calculated and observed solvent shifts and the angle  $\eta$ .

Consequently, the dipole-quadrupole interaction is also concluded to be a main cause for the solvent shift in  $C_6F_6$  as for the case in  $C_6H_6$ .

## References

- 1) R.D. Bertrand, R.D. Compton, and J.G. Verkade, J. Amer. Chem. Soc., 92, 2702 (1970).
- 2) N. Nakagawa, K. Nikki, Y. Takeuchi, and I. Kumagai, Chem. Lett., 1239 (1972).
- 3) M.P. Bogaard, A.D. Buckingham, M.G. Corfield, D.A. Duumur, and A.H. White, Chem. Phys. Lett., 12, 558 (1972).
- 4) T.D. Gierke, H.L. Tigelaar, and W.H. Flygare, J. Amer. Chem. Soc., <u>94</u>, 330 (1972).
- 5) J.D.Connolly and R. McCrindle, Chem. Ind.(London), 379 (1965); J. Chem. Soc.(C), 1613 (1966).
- 6) A.L. McClellan, "Tables of Experimental Dipole Moments", W.H. Freeman and Co., San Francisco Calf. (1963).
- 7) Proton Chemical shifts were measured on a Hitach R-20B spectrometer at 60  $^{\rm MH}_z$  using 0.1 mol% solutions with internal reference of  $^{\rm C}_6{\rm H}_{12}$ . Solvent shift  $^{\Delta\delta=\delta}{\rm C}_6{\rm H}_6$  or  ${\rm C}_6{\rm F}_6^{-\delta}{\rm CCl}_4$ .
- 8) Calculations were performed at the computer center of the University of Tokyo.

(Received April 30, 1974)